Potassium channels in C. elegans.

نویسندگان

  • L Salkoff
  • A D Wei
  • B Baban
  • A Butler
  • G Fawcett
  • G Ferreira
  • C M Santi
چکیده

Ion channels are the "transistors" (electronic switches) of the brain that generate and propagate electrical signals in the aqueous environment of the brain and nervous system. Potassium channels are particularly important because, not only do they shape dynamic electrical signaling, they also set the resting potentials of almost all animal cells. Without them, animal life as we know it would not exist, much less higher brain function. Until the completion of the C. elegans genome sequencing project the size and diversity of the potassium channel extended gene family was not fully appreciated. Sequence data eventually revealed a total of approximately 70 genes encoding potassium channels out of the more than 19,000 genes in the genome. This seemed to be an unexpectedly high number of genes encoding potassium channels for an animal with a small nervous system of only 302 neurons. However, it became clear that potassium channels are expressed in all cell types, not only neurons, and that many cells express a complex palette of multiple potassium channels. All types of potassium channels found in C. elegans are conserved in mammals. Clearly, C. elegans is "simple" only in having a limited number of cells dedicated to each organ system; it is certainly not simple with respect to its biochemistry and cell physiology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sodium-Activated Potassium Channel Is Encoded by a Member of the Slo Gene Family

Na(+)-activated potassium channels (K(Na)) have been identified in cardiomyocytes and neurons where they may provide protection against ischemia. We now report that K(Na) is encoded by the rSlo2 gene (also called Slack), the mammalian ortholog of slo-2 in C. elegans. rSlo2, heterologously expressed, shares many properties of native K(Na) including activation by intracellular Na(+), high conduct...

متن کامل

Action potentials drive body wall muscle contractions in Caenorhabditis elegans.

The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel-dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we s...

متن کامل

Mutants of a temperature-sensitive two-P domain potassium channel.

Within the Caenorhabditis elegans genome there exist at least 42 genes encoding TWK (two-P domain K(+)) channels, potassium channel subunits that contain two pore regions and four transmembrane domains. We now report the first functional characterization of a TWK channel from C. elegans. Although potassium channels have been reported to be activated by a variety of factors, TWK-18 currents incr...

متن کامل

Behavioral Defects in C. elegans egl-36 Mutants Result from Potassium Channels Shifted in Voltage-Dependence of Activation

Mutations in the C. elegans egl-36 gene result in defective excitation of egg-laying and enteric muscles. Dominant gain-of-function alleles inhibit enteric and egg-laying muscle contraction, whereas a putative null mutation has no observed phenotype. egl-36 encodes a Shaw-type (Kv3) voltage-dependent potassium channel subunit. In Xenopus oocytes, wild-type egl-36 expresses noninactivating chann...

متن کامل

EGL-36 Shaw Channels Regulate C. elegans Egg-Laying Muscle Activity

The C. elegans egl-36 gene encodes a Shaw-type potassium channel that regulates egg-laying behavior. Gain of function [egl-36(gf)] and dominant negative [egl-36(dn)] mutations in egl-36 cause reciprocal defects in egg laying. An egl-36::gfp reporter is expressed in the egg-laying muscles and in a few other tissues. Expression of an egl-36(gf) cDNA in the egg-laying muscles causes behavioral def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • WormBook : the online review of C. elegans biology

دوره   شماره 

صفحات  -

تاریخ انتشار 2005